Distributed, Scalable Routing Based on Vectors
of Link States

J.J. Garcia-Luna-Aceves, Member, IEEFE, and Jochen Behrens, Student Member, IEEFE

Abstract— Link vector algorithms (LVA) are introduced
for the distributed maintenance of routing information in
large networks and internets. According to an LVA, each
router maintains a subset of the topology that corresponds
to adjacent links and those links used by its neighbor routers
in their preferred paths to known destinations. Based on
that subset of topology information, the router derives its
own preferred paths and communicates the corresponding
link-state information to its neighbors. An update message
contains a vector of updates; each such update specifies a
link and its parameters. LVAs can be used for different
types of routing. The correctness of LVAs is verified for
arbitrary types of routing when correct and deterministic
algorithms are used to select preferred paths at each router
and each router is able to differentiate old updates from new.
LVAs are shown to have better performance than the ideal
link-state algorithm based on flooding and the distributed
Bellman-Ford algorithm.

I. INTRODUCTION

An internetwork consists of a collection of interconnected
domains, where each domain is a collection of such re-
sources as networks, routers, and hosts, under the control
of a single administration. All the work in inter-domain
and intra-domain routing has proceeded in two main di-
rections: distance-vector protocols (e.g., BGP [19], IDRP
[16], RIP [12], EIGRP [1]) in which routers exchange vec-
tors of distances of preferred paths to known destinations,
and link-state protocols (e.g., the inter-domain policy rout-
ing (IDPR) architecture [6], ISO IS-IS [15] and OSPF [21])
in which routers replicate topology information with which
they compute their preferred paths.

The key advantage of protocols based on distance-vector
algorithms (DVA) is that they scale well for a given combi-
nation of services taken into account in a cost metric. Be-
cause route computation is done distributedly, DVAs are
ideal to support the aggregation of destinations to reduce
communication, processing, or storage overhead. However,
an inherent limitation of DVAs is that routers exchange in-
formation regarding path characteristics, not link or node
characteristics. Because of this, the storage and commu-
nication requirements of any DVA grows proportionally to
the number of combinations of service types or policies [17].

Because protocols based on link-state algorithms (LSA)
replicate topology information at routers, they avoid the
long-term looping problems of old distance-vector proto-

This work was supported in part by the Office of Naval Research
(ONR) under Contract No. N-00014-92-J-1807 and by the Advanced
Research Projects Agency (ARPA) under contract F19628-93-C-0175.
This work was presented in part at the SIGCOMM’'94 Conference,
London, UK, August 31 to September 2, 1994.

The authors are with the Baskin Center for Computer Engineering
and Information Sciences, University of California, Santa Cruz, CA
95064, USA.

cols (e.g., RIP). More importantly, an LSA exchanges in-
formation regarding link characteristics, which means that
the complexity of storing and disseminating routing in-
formation to support multiple types of services and poli-
cies grows linearly with the service types and policies, not
their combinations. However, today’s LSAs use flooding
to disseminate topology information to routers, which con-
sumes excessive communication and processing resources,
and communicating complete topology information to ev-
ery router is unnecessary if a subset of links in the network
is not used in the routes favored by some routers. To cope
with the inherent overhead of flooding, today’s LSAs or-
ganize the network or internet into areas connected by a
backbone. However, this imposes additional network con-
figuration problems and, as the results in [11] indicate, ar-
eas must be chosen carefully, together with the masks used
to hide information regarding destinations in an area, for
any performance improvement to be obtained with respect
to a “flat” LSA. Furthermore, aggregating information in
an LSA is much more difficult than in a DVA (e.g., see
[8], [25]). Because LSAs require topology maps to be repli-
cated at each router, different levels of topologies must be
defined and routers must use multiple topology maps to ag-
gregate informationin an LSA (e.g., [21], [27]). In contrast,
aggregating information in DVAs is very simple, because
DVA exchanges information about distances to destina-
tions, and such destinations can be a single network entity
(e.g., router, network, host) or a group of entities (e.g.,
areas, confederations, clusters). Accordingly, the routing
algorithm uses a single routing table with entries to indi-
vidual or aggregated destinations [20].

Although the inherent limitations of LSAs and DVAs
are well known, existing routing protocols or proposals for
routing in large internets are based on these two approaches
(e.g., see [4], [6]). This paper presents a new method for
distributed, scalable routing in computer networks called
link vector algorithms, or LVA. The basic idea of LVA con-
sists of asking each router to report to its neighbors the
characteristics of each of the links it uses to reach a des-
tination through one or more preferred paths, and to re-
port to its neighbors which links it has erased from its
preferred paths. Using this information, each router con-
structs a source graph consisting of all the links it uses in
the preferred paths to each destination. LVA ensures that
the link-state information maintained at each router corre-
sponds to the link constituency of the preferred paths used
by routers in the network or internet. Each router runs
a local path-selection algorithm or multiple algorithms on
its topology table to compute its source graph with the
preferred paths to each destination. Such path-selection

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 1994 2. REPORT TYPE 00-09-1994 to 00-09-1994
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Distributed, Scalable Routing Based on Vectors of Link States £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Santa Cruz,Department of Computer REPORT NUMBER
Engineering,Santa Cruz,CA,95064

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 13
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

algorithm can choose any type of path (e.g., shortest path,
maximum-capacity path, policy path) and the only two re-
quirements for correct operation are for all routers to use
deterministic algorithms that produce the same type of re-
sult when computing the preferred paths (e.g., one router
can use Bellman-Ford also to compute shortest paths from
its source graph, while others can use Dijkstra’s algorithm)
and that routers report all the links used in all preferred
paths obtained using each.

Because LVAs propagate link-state information by dif-
fusing link states selectively based on the distributed com-
putation of preferred paths, LVAs reduce the communica-
tion overhead incurred in traditional LSAs, which rely on
flooding of link states. Because LVAs exchange routing
information that is related to link (and even node) char-
acteristics, rather than path characteristics, this approach
eliminates the complexity incurred with DVAs for routing
under multiple constraints [17]. Regardless of the type of
routing algorithm used, aggregation information (i.e., hier-
archical routing) becomes a necessity to support routing in
very large networks or internets. LVAs report links needed
to reach destinations, not complete topology maps, and a
destination can be a single entity or an aggregate of entities.
Therefore, aggregation of information can take place in an
LVA by adapting any of the area-based routing techniques
proposed for DVAs in the past (e.g., [8], [18], [28]).

The following sections introduce the network model as-
sumed throughout the rest of the paper, describe LVA,
show that LVA converges to correct paths a finite time af-
ter the occurrence of an arbitrary sequence of link-cost or
topological changes under the assumption that all routers
run the same local algorithm(s) for the computation of pre-
ferred paths, calculate its complexity, and compare its av-
erage performance against the performance of an ideal LSA
and the Distributed Bellman Ford (DBF) algorithm used
in many DVAs.

II. LINK VECTOR ALGORITHM (LVA)

To describe LVA, an internet is modeled as an undirected
connected graph G = (V, E), where V is the set of nodes
and E the set of edges. Routers are the nodes of the graph
and networks or direct links between routers are the edges
of the graph. Each point-to-point link in such a graph
has two lengths or costs associated with it—one for each
direction. Any point-to-point link of the graph exists in
both directions at any one time. For a multi-point link, the
cost of the link is assumed to be the same in all directions,
and exists in all directions at any one time. An underlying
protocol assures that

o A node detects within a finite time the existence of a
new neighbor or the loss of connectivity with a neigh-
bor.

o All messages transmitted over an operational link are
received correctly and in the proper sequence within a
finite time.

o All messages, changes in the cost of a link, link failures,
and new-neighbor notifications are processed one at a
time within a finite time and in the order in which

they are detected.

Each router has a unique identifier, and link costs can
vary in time but are always positive. Furthermore, routers
are assumed to operate correctly, and information is as-
sumed to be stored without errors. The same model can
be applied to a single computer network.

The basic idea of LVA consists of asking each router to
report to its neighbors the characteristics of every link it
uses to reach a destination through a preferred path. The
set of links used by a router in its preferred paths is called
the source graph of the router. The topology known to a
router consists of its adjacent links and the source graphs
reported by its neighbors. The router uses this topology
information to generate its own source graph using one or
more local algorithms, which we call path-selection algo-
rithms. A router derives a routing table specifying the suc-
cessor, successors, or paths to each destination by running
local algorithms on its source graph that can, of course, be
part of the path-selection algorithms.

Figure 1(a) shows an example topology in which each
link has the same cost in both directions. Figures 1 (b)
through (e) show the selected topology known according to
LVA with shortest-path routing at the routers highlighted
in black. Solid lines represent the links that are part of the
source graph of the respective router, dashed links repre-
sent links that are part of the router’s topology table but
not of its source graph. Arrowheads on links indicate the
direction of the link stored in the router’s topology table.
A link with two arrowheads corresponds to two links in the
topology table; since the source graph is a tree rooted at
the black node in the case of shortest-path routing, only
the direction pointing away from the black node can be
part of the source graph. Router z’s source graph shown
in Figure 1(b) is formed by the source graphs reported by
its neighbors y and z (these are formed by the links in solid
lines shown in Figures 1(c) and (d)) and the links for which
router z is the head node (namely links (z, y) and (z, 2)).
A router’s topology table may contain a link in only one
direction (e.g., link (y, u) in Figure 1(b)); this is because a
router’s source graph contains links only in the directions
of its preferred paths.

In addition to the parameters of a link, the record of each
link entry in the topology table contains the set of neigh-
bors that reported the link, and control information used
to detect the validity of updates received for that particular
link.

The basic update unit in LVA is a link-state update re-
porting the characteristics of a link; an update message
contains one or more updates. For a link between router =
and router or destination y, router x is called the head node
of the link in the z to y direction. For a multi-point link,
a single head node is defined. The head node of a link is
the only router that can report changes in the parameters
of that link.

The main complexity in designing LVA stems from the
fact that routers with different topology databases can gen-
erate long-term or even permanent routing loops if the in-
formation in those databases is inconsistent on a long-term

y
&
10

p 10 u 1
ey 10 lo\ig/s 10 Ox rO L ®x
10 y/K / \ /
1 1 O< 1 1 o)
q v 5 q v z
@ (b)
p u 1 y p u 1 y P u 1 y
O O—1—@ O Oz --%--- =Q O O—2—=0
rO ¢ . 0 “ox 10 8 . W0 10 Yox @0 X) Ox
\ 1/ \ :/ 10 \ /
Hl>§5 - e A ——0———=0
(© (d) e

Fig. 1.
arrowheads indicate the stored direction.

or permanent basis.

Sending updates specifying only those links that a router
currently uses in its preferred paths is not sufficient in LVA,
because a given router sends incremental updates and may
stop forwarding state information regarding one or more
links that are not changing the values of their parame-
ters. When this happens, it is not possible to ascertain
if the router is still using those links in preferred paths if
routers’ updates specify only those links currently used in
preferred paths. Simply aging link-state information would
lead to unnecessary additional control traffic and routing
loops, specially in very large internets. Therefore, to elim-
inate long-term or permanent routing loops, routers must
not only tell its neighbor routers which links they use in
their preferred paths, but also which links they no longer
use. Accordingly, routers using LVA send update messages
with two types of update entries: add updates and delete
updates. An add update reports a link that has been added
to the source graph of the sending router or whose infor-
mation has been updated; a delete update specifies a link
that has been deleted from the source graph of the sending
router. An update specifies all the parameters of the link
(just like in an LSA) and a router sends an update in a
message only when a link is modified, added, or deleted in
its source graph, not when the same unmodified link is used
for a modified set of preferred paths; therefore, the num-
ber of update messages and the size of update messages do
not necessarily increase with the number of paths, service
types, or policies that a router uses.

A router reports its source graph to its neighbors incre-
mentally; therefore, a typical update message in LVA con-
tains only a few add and delete updates. Of course, when a
router establishes a new link, it has to send its entire source
graph to the new neighbor; this is equivalent to the LSA
case in which a router sends its entire topology table to a
new neighbor, or the DVA case in which a router sends its
entire routing table to a newly found neighbor.

Example topology. Solid lines indicate links in source graph; dashed lines indicate links in topology table but not in source graph;

Because of delays in the routers and links of the internet,
the add or delete updates sent by a router may propagate
at different speeds along different paths. Therefore, a given
router may receive an update from a neighbor with stale
link-state information. The consistency of link-state in-
formation can be controlled on a link-by-link basis taking
advantage of the fact that the only router that can change
the information about a given link is its head node. More
specifically, a distributed termination-detection mechanism
is necessary for a router to ascertain when a given update
is valid and avoid the possibility of updates circulating in
the network forever [3], [2]. Termination-detection mecha-
nisms based on sequence numbers similar to those used in
a number of LSAs [3], [21], [22] or diffusing computations
[9] can be used to validate updates.

A concrete embodiment of LVA for shortest-path rout-
ing, which we call LVA-SEN; is shown in Figures 2, 3, and
4. LVA-SEN determines the validity of updates using a
sequence number for each link. The sequence number of
a link consists of a counter that can be incremented only
by the head node of the link. For convenience, a router is
assumed to keep only one counter for all the links for which
it is the head node, which simply means that the sequence
number a router gives to a link for which it is the head node

(k, 7) link from & to j

TT; topology table

(k,j,1,¢ts,7) entry in T'T; for (k,j)

{ cost of the link

ts sequence number

r set of reporting nodes for link

ST; source graph at router 7

t sequence number of router processing event
N; set of neighbors of router ¢

entry in update message
add or delete operation

(4,4, 1, ts, type)
type

Fig. 2. LVA-SEN Variables and Data Structures

procedure update (¢, n, message)
begin
u_message = @
updated = update_topology_table (i, message, u_message)
if u_message # 0
send (n, u_message)
end if
u_message = @
if updated then
build_shortest_path_tree (i, TT;, New ST;)
build routing table
compare_source_graphs (¢, ST;, NewST;, u_message)
remove marked links from T'T;
if u_message # 0 then
for all x € N; do
send (z, u_message)
end for
end if
ST; = NewST;
t=t+1
end if
end update

procedure link_change(t)
begin
update(i, i, {(i,j, 1, ¢, add)})
end link_change

procedure link_down(%, j)
begin

message = §

N; = N; — {i} (but keep sequence number)

for all (k,m) € TT; do
TTi(k,m).r =TT;(k,m).r —{j}
if TTi(k,m).r =® or TT;(k,m).r = {i} then

message = message U {(T7T;(k, m), delete)}

end if
end for
message = message U {(i, j, 00, t, delete)})
update (i, i, message)

end link_down

procedure link_up(z, j)

begin
N; = N; U {j}
update (7,4, {(i, 4,1}, ¢,add)})
u_message = @
for all (k,m) € ST; do

u_message = u.message U (TT;(k,m), add)

end for
send(j, u_message)

end link_up

procedure node_up (i);
begin
t=20
message = @
Ny = {2]3(i,2), 1% < oo}
for all ¢ € N; do
TT; =TT; U (i,z,1.,t,{i})
ST; = ST; U (i,z,t)
end for
build new routing table
for all z € N; do
send (z, query)
end for
answers_received = 0
while answers_received < |N;| do
receive (answer)
t = max{t,answer.t}
update_topology_table (i, answer, u_message)
end while
t=t+1
for all z € N; do
TT:(i,z)t=t
end for
build_shortest_path_tree(i, TT;, New ST;)
build new routing table
ST, =0
u_message = @
compare_source_graphs (ST;, NewST;, u_message)
for all z € N; do
send (z, u_message)
end for
ST; = NewST;
t=t+1
end node_up

procedure answer_query(z, j)
begin
if (i,7) ¢ ST then
STi = 8T; U (4, §)
build routing table
end if
for all (k,m) € ST;
u_message = u_message U TT;(k, m)
end for
u_message.t = t;
send (j, u_message)
end answer_query

Fig. 3. LVA-SEN Specification

can be incremented by more than one each time the link
parameters change values. The information regarding each
link in a router’s topology table is augmented to include
the sequence number of the most recent update received,
which was generated by the head node of that link.

For simplicity, the specification of LVA-SEN assumes
that unbounded counters are used to keep track of se-
quence numbers and that each router remembers the se-
quence number of links deleted from its topology table long
enough for the algorithm to work correctly. In practice, if
finite sequence numbers are used to validate updates, a re-
set mechanism is needed to recycle sequence numbers. An
age field serves this purpose [3]; when a link is deleted from
the topology table, the router maintaining the table labels
the link as deleted, which means that it is not used to com-
pute new source graphs, and keeps the link entry until the
age field of the entry expires. To limit the size of the age
field, the head node of each link sends an add or delete
update for that link periodically (depending on whether or
not the link is in its source graph), even if no changes occur
in the link. The maximum age of a link is then a multiple

of the time it takes for an update to propagate throughout
the network.

Procedures update, wupdate_topology_table, and com-
pare_source_graphs in Figure 3 are the core of LVA-SEN|
in that these procedures are performed to update the data
structures held at the router each time a router processes
an input event (e.g., a message from one of its neighbors,
or a link-cost change notification from an underlying pro-
tocol).

In LVA-SEN, when a router processes an add or delete
update, it first compares the sequence number in that up-
date against the sequence number maintained for the same
link in the topology table. The update is processed if either
it specifies a larger sequence number than the one stored
in the topology table, or no entry for the link exists in the
topology table. In the case of an add update, the link state
is added to the topology table, or the new values of the link
parameters replace the current entry, or the reporting node
is added to the set of nodes that reported that link. For the
case of a delete update, if there is an entry concerning the
reported link in the topology table, then the reporting node

procedure update_topology_table (i, message, u_message)
begin
updated = false
for all m = (j,k,I,ts, type) do
if type = add then
if (j,k) € TT; then
if TT;(j, k).t < m.ts then
TT:(j, k) =m
TT;(j, k).r = {message.source }
updated = true
else if TT;(j,k).t = m.ts and i # message.source then
).

TT;(j,k).r = TT:(j, k).r U { message.source }
updated = true
end if

else if (i #Z j or message.source = 1)
and (TT;(j, k).t <= m.ts) then
TT; =TT; Um
updated = true
end if
if TT;(j, k).t > m.ts then
if (j,k) € ST, then
u_message = u_message U (TT;(j, k), add)
else
u_message = u_message U (TT;(j, k), delete)
end if
end if
else if type = delete
if TT;(j, k).t < m.ts then
if (§,k) € TT; then
mark (7, k) as deleted
updated = true
else
TT:(j, k)t =m.ts
end if
else if TT;(j, k).t = m.ts then
if (j,k) € TT; then
TT:(j, k).r = TTi(j, k).r—{message. source}
if (TTi(j,k).r =0 or TT;(j, k).r = {i})
and ¢ # message.source then

mark (j,k) as deleted
updated = true
end if
end if
else if TT;(j,k).t > m.ts then
if (j,k) € ST; then
u_message = u_message U (TT;(j, k), add)
else
u_message = u_message U (T7;(j, k), delete)
end if
end if
if TT;(j, k).l = co and TT;(j, k).t < m.ts then
TT:(j, k)t =m.ts
end if
end if
if j = message.source and j € N; then
store sequence number of neighbor
end if
end for
return updated
end update_topology_table

procedure compare_source_graphs (¢, ST;, New ST;, u_message)
begin
for all (j, k) € NewST;, ((j,k) ¢ ST;
or NewST;(j, k).ts > ST;(j, k).ts) do
u_message = u_message U (j, &, TT;(j,k).ts, TT:(j,k).l, add)

end for
for all (j,k) € ST, (j,k) ¢ NewST; do
if i = j then
u_message = u_message U (j, k,t,TT;(j, k).l, delete)
else

u_message = u_message
U (4,k,TTi(j§,k).ts, TT;(j,k).l, delete)
if
end for
end compare_source_graphs

Fig. 4. LVA-SEN Specification (Cont.)

is removed from the set of reporting nodes, and the link is
deleted from the topology table if that set becomes empty
and the link is not an outgoing link of finite length. An
update 1s discarded if it specifies a sequence number that
is smaller than the one in the topology table, in this case,
the receiving node prepares an update for the same link
intended to correct the information stored by its neighbor.

Dijkstra’s algorithm [3], or any other shortest-path al-
gorithm, is run on the updated topology table to con-
struct a new source graph, which constitutes a shortest-
path tree; in this case, the new routing table is gener-
ated together with the source graph. The router compares
the new source graph against its old one (procedure com-
pare_source_graphs), and an update message is sent with
the differences between the two. In addition to changes in
membership, a link in the source graph is considered differ-
ent if its sequence number is changed. If the different link
is in the new source graph, then an add update about this
link is added to the update message. If the link is in the
old source graph but is not in the new one, then a delete
update is added. If any of the link entries refer to the state
of an outgoing link of the node itself, then it gets a current
sequence number. When a router sends an update message,
it increments its sequence-number counter and discards its
old source graph.

If a link cost changes, then its head node is notified by
an underlying protocol. The node then runs update with
the appropriate message as input. This holds for simple
changes in link cost, as well as for a link failure. In the lat-
ter case, the link cost is set to infinity. The same approach

is used for a new link or a link that comes up again after
a failure. In the case of a failing node, all its neighbors are
notified about the failure of their links to the failed node;
these nodes then remove the failed node from the list of
reporting nodes for all affected links, and therefore obtain
an accurate picture of the topology after running the up-
date procedure. Multiple changes in the status of nodes or
links may be implied by the input event (e.g., a message
received, a link failure). A node processes all such changes
before it sends its own update message.

We assume that the node that comes up for the first
time after a failure does not ‘remember’ any information
that it previously had; in particular, it does not know the
last sequence number it used. After initializing its data
structures, the node that comes up sends a query to all its
neighbors. In response, its neighbors send back their com-
plete source graphs, plus the latest sequence number they
received from the node (nodes store sequence numbers of
neighboring nodes, which are updated when a link of some
neighbor is changed). The node collects all this informa-
tion, updates its topology table and sequence number, and
then performs the same steps as in the procedure update.

Consider the topology of Figure 1 and assume that link
(y,z) fails. Nodes y and z process this failure and call
procedure link_down; because neither node uses the failed
link in its source graph, no update results from this failure.
Consider now the case in which link (z,y) fails. Nodes
z and y call procedure link_down. Because link (z,y) is
used in the source graph of both nodes, they must send
an update message. The message sent by node y to its

Y SR B A8 B pad
e we N S N X, o ..
1 ! 1 1
PN ! NEPANL! PN
q \ z q \Y z q v z
@ (b) (0

Fig. 5. View of topology at nodes z and y after link (z,y) fails

neighbors specifies a delete update for link (y, z) and add
updates for links (v, z) and (z, #), which must now be used
to reach nodes z and x, respectively, and, therefore, must
be added to node y’s source graph; furthermore, its update
message also specifies delete updates for link (z, z) which
cannot be used to reach node z anymore. Figure 5(a) shows
node y’s view of the topology after the link failure. If node
u used the path u, v, z, z to reach node z, the update from
node y causes no changes to u’s source graph and it simply
updates its topology table based on y’s update.

On the other hand, when node z processes the failure
of link (z,y), it has no path left to reach node y, because
it has no link incident into node y left in its topology ta-
ble. Node z sends a message containing delete updates for
links (#,y) and (y,u), and an add update for link (w,u).
Figure 5(b) shows node z’s view of the topology at that
time. When node z processes node z’s update, it sends
and update message that must contain an add update for
link (u,y) and a delete update for link (z,y). When node
x processes that message, it obtains the view of the topol-
ogy shown in Figure 5(c). Note that node z’s update does
not create any changes in node v’s source graph, who must
reach node y through path v, w, u, y; therefore, node v does
not send any update as a result.

I11. DIFFERENCES WITH PREVIOUS METHODS

Three types of prior algorithms have been or can be used
to compute preferred paths based on link-state informa-
tion: link-state algorithms (LSA), path-finding algorithms
(PFA), and path-vector algorithms (PVA).

A. Differences with LSAs

LSAs are also called topology broadcast algorithms. In an
LSA, information about the state of each link in the net-
work is sent to every router by means of a reliable broad-
cast mechanism, and each router uses a local algorithm to
compute preferred paths. The key difference between LSAs
and LVAs is that each link-state update propagates to all
routers in an LSA, while in LVA the update propagates
to only those routers that use the corresponding link in a
path to a destination and their neighbors. Therefore, the
reliable broadcast mechanisms used in LSAs to ensure that
all routers with a physical path to a source of link-state up-
dates receives the most recent updates within a finite time
(e.g., see [3], [9], [7], [13], [22]) are not directly applicable
to an LVA. Furthermore, as argued before, a router using
LVA must explicitly state which links it stops using.

Figure 1 helps to illustrate how LVA reduces storage and
communication overhead compared to LSAs, even for the
case of a fairly compact topology. An LSA would require
each router to maintain a copy of the entire topology, with
an entry for each link in each direction. Because a router’s
source graph contains the links in all its preferred paths,
a router using LVA has the same number of paths avail-
able as with an LSA for any type of routing that applies
the same constraints at every router (e.g., shortest path
routing, maximum capacity routing). In the case that the
type of routing permits different constraints to be applied
at different routers (e.g., policy-based routing), LVA offers
only a subset of the paths available with complete topology
information. However, such a subset of paths is the same
as that obtained with any PVA | which are used in standard
inter-domain routing protocols.

In the worst case, each router’s source graph contains
all the links in the network and the LVA requires the same
communication and storage overhead as an LSA. The num-
ber of updates and size of updates in an LVA are bounded
by a number proportional to the number and size of up-
dates in an LSA, because in that case update messages
contain add updates reporting changes to the parameters
of network links, just as in an LSA.

B. Differences with PFAs

The basic idea in a PFA is for each router to maintain
the shortest-path spanning tree reported by its neighbors
(i.e., those routers connected to it through a direct link or a
network), and to use this information, together with infor-
mation regarding the cost of adjacent links, to generate its
own shortest-path spanning tree. An update message ex-
changed among neighbors consist of a vector of entries that
reports incremental or full updates to the sender’s spanning
tree; each update entry contains a destination identifier, a
distance to the destination, and the second-to-last hop in
the shortest path to the destination. Several PFAs have
been proposed (e.g., see [5], [14], [23]). Another PFA by
Riddle [26] is similar to the PFA method just mentioned
in that a router communicates information regarding the
second-to-last hop in the shortest path to each known des-
tination. However, it uses exclusionary trees, rather than
shortest-path spanning trees, and the cost of the link be-
tween the second-to-last hop and the destination, rather
than the distance to the destination. An exclusionary tree
sent from router x to router y consists of router x’s entire
shortest-path tree, with the exception of the subtree por-
tion that has node y as its root. Riddle’s algorithm does

not use incremental updates.

Of course, any path-finding algorithm can use the cost
of the link between the second-to-last hop and the desti-
nation, rather than the distance to the destination. How-
ever, the set of preferred paths used by a node to reach
other nodes need not constitute a tree in LVA and it is al-
ways a tree in a path-finding algorithm. There are many
reasons why routers may want to communicate link-state
information of preferred paths that do not correspond to a
tree. For example, if multiple shortest paths are desired,
a router will communicate links along multiple preferred
paths to each destination. Because there can be multiple
links leading to the same node in the subgraph of preferred
paths communicated by a router, a router that receives an
incremental update from a neighbor cannot simply assume
that the link from node a to node b communicated by its
neighbor can substitute any previously reported link from
another node ¢ to node b by the same neighbor; therefore,
the update mechanisms used in path-finding algorithms to
update the subset of link states maintained at each router
are not applicable to LVA.

C. Differences with PVAs

With PVAs, routers exchange distance vectors whose en-
tries specify complete path information for any destination
they need to reach. The existing internet routing protocols
based on PVAs (BGP [19] and IDRP [24]) do not exchange
link-state information per se, but such information can be
exchanged in a PVA by including it as part of the infor-
mation for each hop of the reported path in an update or
update entry. This, however, would become very inefficient
when the size of the network and the number of link-state
parameters are large, or when multiple preferred paths to
each destination are desired.

LVAs provide routers with all the path information that
PVAs provide, but with far less overhead. This is the case
because a router that uses a given link in one or more
preferred paths reports that link only once in LVA, while
it has to include the link in each preferred path it reports
using a PVA.

As we have noted, any routing algorithm that operates
with less than a complete topology map reduces the set of
all the possible paths that could be used to reach desti-
nations when different constraints are applied at different
nodes. In practice, this is not a problem, an LVA used
for a given type of routing provides routers with exactly
the same information than a PVA would for the same type
of routing, because the routers’ source graphs contain all
the links in all the preferred paths selected by the routers.
Therefore, any routing constraints or policies that can be
supported with a PVA can be supported with an LVA, and
practical routing protocols can be developed based on LVAs
that provide the same functionality supported in BGP and
IDRP, for example [24].

A more subtle difference between LVA and a PVA using
link-state information is that routers using LVA determine
whether or not an update to a link state is valid based on
the timeliness of that update alone, just as in an LSA. In

contrast, a router using a PVA that communicates link-
state information still has to operate on a path-oriented
basis, i.e., the timeliness of an update refers to an entire
path, not its constituent links; therefore, even if a router is
able to ascertain that a given update is more recent than
another, that update may still use link-state information
that is outdated (e.g., regarding links that are far away in
the path). To eliminate the possibility of using stale link-
state information in an adopted path, each link of the path
could be validated (with a sequence number, for example),
but this becomes inefficient in a large internet.

IV. CORRECTNESS OF LVA

Theorem 1 below shows that LVA is correct for multiple
types of routing under the assumptions introduced in Sec-
tion IT and the additional assumptions that there is a finite
number of link cost changes up to time ¢y, that no more
changes occur after that time, and that routers can cor-
rectly determine which updates are more recent than oth-
ers. Corollary 1 then shows that routing tables do not con-
tain any permanent loops. Verifying that finite sequence
numbers and age fields can be used correctly to validate
updates can be done in a manner similar to that used for
finite sequence-numbering schemes used in LSAs [3].

Correctness for LVA means that, within a finite time af-
ter tg, all routers obtain link-state information that allow
them to compute loop-free paths that adhere to the con-
straints imposed by the local algorithms they use to com-
pute preferred paths, and to forward packets incrementally.

Because our proof of correctness is intended for many
different types of routing, not only shortest-path routing,
we must specify what we mean by the correct operation
of a path-selection algorithm. Consider the case in which
each router in the network has complete and most recent
topology information in its topology table and runs the
same path-selection algorithm on it. In this case, it is ev-
ident that, for permanent loops to be avoided, the way in
which the path-selection algorithm chooses routes must be
deterministic. Assuming that the same deterministic path-
selection algorithm is executed at each router using a com-
plete and most recent copy of the topology, the preferred
paths at any router for each destination constitute a di-
rected acyclic graph (DAG). Furthermore, the union of the
DAGs of any set of routers for the same destination in the
network is also a DAG. Therefore, there are no permanent
loops in the routing tables computed in this case.

Definition 1: A correct path-selection algorithm is one
that produces the same loop-free paths when it is provided
with the same complete and correct topology information.

It is not necessary for all routers to use the same correct
path selection algorithm to compute preferred paths for a
given type of routing. All that is needed is for all the path-
selection algorithms used for the same type of routing to
produce the same loop-free paths when they are provided
the same topology information.

Definition 2: Two or more path-selection algorithms are
compatible if they produce the same loop-free paths when
they are provided with the same topology information.

As we have stated in the description of LVA, all routers
use the same path-selection algorithm, or compatible path-
selection algorithms, to compute the same type of preferred
paths (e.g., shortest path, maximum capacity), and re-
port all the links used in all the preferred paths obtained
through all the path-selection algorithms. Therefore, the
rest of this section can assume that a single path-selection
algorithm is executed at every router, and that every router
runs the same path-selection algorithm.

Because the topology tables of different routers running
LVA need not have the same information, we cannot use the
notion of having all topology tables containing the same in-
formation to ensure correct paths. The following definition
specifies what a topology table should have for loop-free
paths to be produced in LVA.

Definition 3: A router is said to have consistent link-
state information in its topology table if it has the most re-
cent link-state information regarding all the links for whom
it is the head node, and the most recent link-state infor-
mation corresponding to each of its neighbor’s most recent
source graph.

Theorem 1: A finite time after ¢, all routers have con-
sistent link-state information in their topology tables and
the preferred paths computed from those tables are correct.
Proof: Because the deterministic path-selection algorithm
used at each router is assumed to be correct, all the proof
needs to show is that

1. All routers eventually stop updating their topology
and routing tables, and stop sending update messages
to their neighbors.

2. All routers obtain consistent link-state information
needed to compute correct preferred paths within a
finite time after ¢g.

These two properties are proven in the two lemmas in-

cluded in the Appendix.

Corollary 1: The routing tables created by LVA do not
contain any permanent loop.

Proof: Lemma 2 in the Appendix shows that the topol-
ogy information at all routers is consistent within a fi-
nite amount of time after any change in link information.
The topology information held at any router is a subset
of the complete topology, and this subset contains all the
information needed at this router to compute the correct
preferred paths. Therefore, the preferred paths computed
from any router’s subset of the topology information must
be a subset of the DAG computed in the case of each router
having complete topology information. Any subset of a
DAG is still a DAG; and the union of any such DAGs
also forms a DAG, because that union is also a subset
of the DAG obtained with complete topology information.
Hence, the routing tables computed by LVA with a correct
path-selection algorithm do not contain permanent loops.

q.e.d.

V. COMPLEXITY OF LVA

This section quantifies the communication complexity
(i.e., number of messages needed in the worst case), time
complexity (number of steps), computation complexity,

and storage complexity [10] of LVA for shortest-path rout-
ing after a single link change.

A. Communication Complexity

The number of messages per link cost change is bounded
by twice the number of links in the network. To prove
that this is the case, it suffices to show that any update
can travel each link at most twice. Assume that an update
concerning link { arrives at some arbitrary node n for the
first time; there are two possibilities to consider:

1. The link is used in the source graph of n. If this is the
case, the corresponding link-state information is sent
to some neighbor n; over some link /;. There are two
possibilities at this router:

(a) ny uses [: If the information was already known
and used at nq, then no further update will be sent
over {1 (or any other link adjacent to ny). If it was
not previously known at ni, then an update will be
sent to all neighbors of ny, including one over {; to
n. From n, no further update with information con-
cerning [will be sent over {1, until newer information
becomes available.

(b) n1 does not use I: ny will not sent any update with
information concerning [, in particular none over ;.

2. The link is not used at n, in which case no further
update will be sent.

From the above, it follows that the number of messages
1s at most 1n the order of the number of links in the network

(O(I£]))-

B. Time Complexity

If the cost of links is not directly related to the delays
incurred over such links, the number of steps required for
any link change is O(z), where z is the number of nodes
affected by the change. This can be shown by the follow-
ing argument: the information about a changed link travels
along all the shortest paths that contained the link before
the change, and also along all shortest paths that will con-
tain the link after the change. No other router than those
along the paths and their neighbors will be notified about
the change.

In the worst case, all the affected routers lie along one
long path, thus causing O(z) communication steps. In gen-
eral, the paths on which the information is forwarded to-
gether with the affected routers form a directed, acyclic
graph, and the upper bound for the steps required is given
by the length of the longest simple path in that graph.

Because link failures and recoveries are handled as spe-
cial cases of link cost changes, and router failures are per-
ceived by the network as link failures for all their links, it
is clear that O(z) communication steps are also incurred
in these cases. The case of a recovering node involves the
nodes getting the complete source graphs from its neigh-
bors, which takes no more steps than the number of neigh-
bors, before the links of the routers again are handled as
changing their cost to some finite value. Hence, the same
upper bound of O(z) applies.

This worst case is the same as the complexity of the
best DVA [10]. On the other hand, if the link costs reflect
the delay of the links, the complexity for LVA reduces to
O(d), where d is the (delay) diameter of the network. The
reasons for this are that the information travels along the
shortest paths and a router receiving new information can
trust the neighbor that reports the most recent link-state
for the associated link; most importantly, the node will
discard older information from other neighbors. Therefore,
a router does not have to wait for link state updates to
reach it through the slower paths, as is in the case in DVAs.
The flooding technique used in LSAs also takes O(d).

C. Complexity of Computations at Routers

The most important routines to analyze are update and
update_topology_table. Most other procedures just call up-
date with the appropriate input message. One part of up-
date is the shortest path finding algorithm (Dijkstra) with
a complexity of O(|V|?). The routing table can then be
computed in time O(]V]), and the update message can be
assembled using compare_source_graphs in less that O(|V|?)
time.

The complexity of the main loop of procedure up-
date_topology_table is determined by the size of the update
message. In the worst case, this message could contain
information about every link, resulting in running time
O(|E|) < O(]V|?). This case seems highly unlikely, though.

In “normal” cases, we would expect an update message
to contain information about some path plus possibly a
second path that has to be deleted. A path can have at
most length [V] — 1, leading to an expected complexity of
O(]V]). The amount of work in the other loops is bounded
by the number of nodes in the network.

All together, the overall worst case complexity for the
procedure update is O(|V'|?), mainly due to the shortest
path algorithm. The corresponding complexity in a PVA
is O(|V]) for a single type of service.

Note that there also is the hidden complexity of access-
ing the topology table; this problem can be solved using
a (dynamic) hash table, which has an expected constant
access time.

D. Storage Complexity

In the worst case, the topology table of each router main-
tains the whole topology, making the storage requirement
O(]V|?). In addition, both the shortest path tree and the
routing table require O(|V|) storage, which is also the case
for link state algorithms. Keeping track of reporting neigh-
bors in LVA can be implemented by means of a bit vector.
Because the identifiers of a router’s neighbors can be stored
in an ordered list, a single bit per neighbor suffices to indi-
cate whether it is a member of the set of reporting nodes
for a given link or not. Therefore, for each link in the topol-
ogy table; the information about the reporting nodes adds
only a constant amount of storage (which should be a few
bytes for all practical purposes).

On the average, we expect the storage for the topology
table to be by far smaller than O(|V|?). Because the goal is

to keep as sparse a subset of the whole topology as possible
(e.g., close to a tree), our conjecture is that the required
storage space is closer to O(|V|) for such simple types of
routing as shortest-path routing. This seems realistic, even
the small topology shown as example in Figure 1 revealed
a significant saving of required space when compared to an
algorithm that stores the complete topology at all routers.
In contrast, the LSAs used today have to store the com-
plete topology. Though the storage required for DVA is
linear in the number of routers, routers have to store the
routing tables of their neighbors. Therefore, DVAs’ storage
requirement really become O(|V||Ng|) at router k, where
Ny, is the set of neighbors of node k.

VI. SIMULATION

We compare LVA-SEN, DBF, and an ideal LSA in terms
of the number of steps and updates that are required for
the algorithm to converge (i.e., the algorithm stops sending
messages), and the size of these updates. When a node re-
ceives an update message, it compares its local step counter
with the sender’s counter, takes the maximum and incre-
ments the count. In all three algorithms, update messages
are processed one at a time in the order in which they ar-
rive. Both LVA-SEN and LSA use Dijkstra’s algorithm to
compute the local shortest-path tree. The results presented
are based on simulations* for the DOE-ESNET topology
[11]; similar results were obtained for other smaller topolo-
gies. The graphs show the results for every single link
changing cost from 1.0 to 2.0 (Fig. 6, 7, 8), every link
failing (Fig. 9, 10, 11) and recovering (Fig. 12, 13, 14), as
well as every node failing (Fig. 15, 16, 17) and recovering
again (Fig. 18, 19, 20). All changes were performed one
at a time, and the algorithms had time to converge before
the next change occurred. The ordinate of Figures 6 to 14
and Figures 15 to 20 represent identifiers of the links and
the nodes, respectively, that are altered in the simulation.
In Figures 6, 9, 12, 15, and 18, the data points show the
number of update messages sent, in Figures 7, 10, 13, 16,
and 19 they show the size of these updates, and in Figures
8, 11, 14, 17, and 20, they show the number of steps needed
for convergence.

LSA shows almost constant behavior for all single link
cost changes (Figures 6, 8) because the same link-state up-
date must be sent to all routers. In contrast, DBF and
LVA-SEN propagate updates to only those routers affected
by the link-cost change; LVA-SEN is the most efficient of
the three algorithms. Each update message contains one
link state in LSA, and an average of 1.77 links in LVA-
SEN. Figures 9 and 11 show similar behavior of the three
algorithms for link failures, the exception being DBF suf-
fering from ‘counting to infinity’ in some cases. In almost
all cases, LVA-SEN needs fewer update messages and fewer
steps than LSA; the average size of an LVA-SEN messages
is 2.89 links.

When a failed link recovers, DBF is superior to both
LVA-SEN and LSA. LSA exhibits the same behavior as

*We thank MIL-3 for donating us the OPNET modeling and sim-

ulation tools under their university program.

Updates
Size of Updates

1 35 7 9111315171921232527293133 0
Link Changing

Fig. 6. Updates for link changes

10000 - 10

Updates
Size of Updates

Il | | | [
1 35 7 9111315171921232527293133
Link Changing

Fig. 7. Size of updates for link changes

10

Steps

2 I | | | Lo
1357 9111315171921232527293133
Link Changing

Fig. 8. Steps for link changes

1000 -

Steps

Link Failing
Fig. 9. Updates for link failures

10

Size of Updates

0 I ——
1357 9111315171921232527293133

1 35 7 9111315171921232527293133
Link Failing

Fig. 10. Size of updates for link failures

0 [| | I
1357 9111315171921232527293133
Link Recovering

Link Failing
Fig. 11. Steps for link failures

2 [| | |
1357 9111315171921232527293133

Link Recovering = Links per Update LVA

= Links per Update LSA

v Distances per Update DBF

Link Recovering

= LVA-SEN v DBF = LSA

|- Updates LVA-SEN -+~ Updates DBF = UpdatesLSA |

Fig. 12. Updates for link recoveries
ies

with link-cost changes. With the exception of link 30, LVA-
SEN is always better than LSA (Figures 12 and 14). The
average LVA-SEN message is slightly more than three links;
and LVA-SEN almost always requires less information to be
sent than LSA and DBF, because messages in LSA are no
longer one-link long due to the packets containing complete
topology information sent over the recovering link.

For failing nodes, LSA usually has the best performance
of the three algorithms. DBF always suffers from ‘counting
to infinity’. In almost all cases, LSA needs fewer steps and
updates (Figures 15 and 17) than the other algorithms.
The average message size for LSA is one link and 1.9 links
for LVA-SEN.

DBF is superior to LSA when a node recovers, and
LVA-SEN performs even better than DBF. LVA-SEN needs
fewer steps and updates than the other algorithms (Figures
18 and 20). The average message size for LVA-SEN is 3.60
links), but of the three algorithms it still requires the least
amount of information to be sent through the network.

Overall, the results of our simulations are quite encour-
aging. In terms of its overhead, LVA-SEN behaves much

Fig. 13. Size of updates for link recover-

Fig. 14. Steps for link recoveries

like DBF when link costs change and is always faster and
produces less overhead traffic than LSA when resources are
added to the network, and behaves much like the ideal LSA
when links or routers fail. This is precisely the desired re-
sult, and indicates that LVAs are desirable even if multiple
constraints are not an issue. It is apparent that LSA per-
forms better than LVA only after node failures. The reason
for this is that a failed node always impacts one preferred
path for each node (i.e., every node’s path to the failed
node), which implies at least one delete update, and may
also impact additional preferred paths of a subset of the
nodes for other destinations, which may imply various add
and delete updates for different links. Therefore, while LSA
has to report only what happened to the links adjacent to
the failed node, LVA needs to also add other links to bypass
the failed node.

A simple way to improve the performance of an LVA af-
ter a node failure is the following: when a router detects
a link failure or receives a delete update from a neighbor
reporting a link failure, the router waits for a short hold-
down time proportional to one propagation time between

10000 - 10

1000

Updates
Size of Updates

| | |
7 9 11131517 19212325 1
Node Failing

|
135

Fig. 15. Updates for node failures

[| [[
9 11 13 15 17 19 21 23 25
Node Failing

Fig. 16. Size of updates for node failures

11

Steps

1 11 |

| Il | | I
1 35 7 91113151719212325
Node Failing

Fig. 17. Steps for node failures

Size of Updates

1357 91113151719212325

0 + H H—+ + H—+ H—+
1357 91113151719212325
Node Recovering

5 ——
1357 91113151719212325

Node Recovering = Links per Update LVA

-=- Links per Update LSA

x Updates LVA-SEN v Updates DBF = Updates LSA

Node Recovering

v Distances per Update DBF

= LVA-SEN v DBF = LSA

Fig. 18. Updates for node recoveries .
eries

neighbor routers to receive updates from other neighbors
(which may contain delete updates for links adjacent to
the same destination in the case of a node failure) before
it updates its source graph and generates its own updates.
Although the time a router takes to propagate updates due
to link failures increases, the associated control traffic de-
creases; furthermore, routers away from the failed resource
are more likely to get all the delete updates associated with
a node failure in the same update message from any one
of its neighbors, which means that the router will identify
a destination that has failed and will not try to add links
that no longer exist to its source graph to try to reach or
use such destination as part of its preferred paths.

For larger topologies in which no hierarchical routing
is used, we speculate that the relative differences in per-
formance among the three algorithms are much the same.
One possible exception may be that, as the networks be-
come more richly connected any one link or node becomes
less important to reach other nodes; therefore, with the ex-
ception of deleting links corresponding to the paths used
to reach a failed node, other updates caused by a node
failure will span only a few hops, because the probability
of nodes not using a failed node to reach other destina-
tions increases with network connectivity. For very large
networks, however, hierarchical routing becomes a neces-
sity; as we have stated, in this case LVAs can use simpler
schemes than those needed in LSAs.

VII. CONCLUSIONS

We have presented a new method for distributed routing
in computer networks and internets using link-state infor-

Fig. 19. Size of updates for node recov-

Fig. 20. Steps for node recoveries

mation. LVAs enjoy nice scaling properties: like DVAs,
LVAs scale well with the number of destinations by aggre-
gating information; like LSAs, LVAs scale well with the
number of service types because routers communicate link
properties, not path properties in their updates. An im-
portant contribution of this paper is to show that LVA is
correct under different types of routing, assuming that a
correct mechanism is used for routers to ascertain which
updates are recent or outdated.

LVAs open up a large number of interesting possibilities
for routing protocols of large internets. LVAs can be used
to develop intra-domain routing protocols that are based
on link-state information but require no backbones or ar-
eas, and can take advantage of simple aggregation schemes
developed for DVAs. LVA can also be applied to inter-
domain routing protocols that provide the same function-
ality of BGP/IDRP while reducing the overhead incurred
in communicating and storing updates.

APPENDIX
PrROOF OF THEOREM 1

Lemma 1: LVA terminates within a finite amount of
time after ¢g.
Proof: First note that there is a finite number of links in
the network and that, by assumption, a finite number of
link-state changes occur up to time tg, after which no more
changes occur. Also, by assumption, for each direction of
a link whose parameters change, there is one router (the
head node of the direction of the link) that must detect
the change within a finite time; such a router updates its

topology table and must then update its source graph. As
a result of updating its source graph, the router can send
at most one add update reporting the change in the state of
the adjacent link, and at most one add or delete update for
each of the links that have been added to or deleted from
preferred paths as a result of the change in the adjacent
link. Therefore, for any link /; in the network, its head
node can generate at most one update for that link after
time tg.

A given router z; that never terminates LVA must gen-
erate an infinite number of add or delete updates after time
to. It follows from the previous paragraph that this is pos-
sible only if 21 sends such updates as a result of processing
update messages from its neighbors; furthermore, because
the network is finite, £; must generate an infinite number
of updates for at least one link /;. Because the network is
finite, at least one of those neighbors (call it z5) must send
to z1 an infinite number of update messages containing an
update for either link /; or some other link /5 that makes
z1 generate an update for link {;. It follows from the previ-
ous paragraph and the fact that the network is finite that
x5 can send an infinite number of updates regarding link
l; or I3 to x; only if at least one of its neighbors (call it
x3) generates an infinite number of updates for either link
l5 or some other link /3 that makes x5 generate updates
regarding link [y or ls. Because the network is finite, it
is impossible to continue with the same line of argument,
given that the head node of any link can generate at most
one update for that link after time ¢q. Therefore, LVA can
produce only a finite number of updates and update mes-
sages for a finite number of link-state changes and must
stop within a finite time after #g. q.e.d.

Lemma 2: All routers must have consistent link-state in-

formation in their topology databases within a finite time
after tg.
Proof: The definition of consistent link-state information
at a router implies that the router knows all the links
it needs to compute correct preferred path, and that the
router has the most recent link-state information regarding
all the links in its topology table. Proving that the router
receives all the link-state information required to compute
correct preferred paths can be done by induction on the
number of hops h of a preferred path. What needs to be
shown is that the router knows all the links on that path
within a finite time after ¢g.

Consider some arbitrary preferred path from a router ¢
to some destination. For h = 1, the preferred path con-
sists of one of router ¢’s outgoing links. Because of the
basic assumption that some underlying protocol provides
a router with correct information about its adjacent links
within a finite time after the link-state information for such
links changes, the lemma is true for this case. For h > 1,
assume that the claim is true for any preferred path with
fewer than A hops.

Consider an arbitrary preferred path of length A > 1
from some router 7 to a destination j. Let k be router ¢’s
successor on this path (i.e., the first intermediate router).
Then, the subpath from &k to j must have length A — 1, and

12

it must be one of router k’s preferred paths to j. Denote
this path by Pg;. By the inductive hypothesis, router &
knows all the links on Py;. Because router i also knows
(as in the base case) the most recent information about
link li within a finite time after ¢, it suffices to show that
router k indeed sends the link information in path F; to
its neighbor router i.

Assume that Py; is a new path for router k, then router
k must update its source graph. Because Fy; is a new
path for router k, the information in the updated source
graph concerning Fj; is different than the information in
the old source graph. Therefore, router £ must include this
information as add updates in the update message that it
sends to its neighbors. Because router i is one of those
neighbors, it must receive from k all the information on
Py; within a finite time after 0.

By assumption router k£ can determine which link-state
information is valid (i.e., up to date). Accordingly, if Py; is
already one of router k’s preferred paths, but experiences a
change in the information of some of its constituent links,
then those links with updated link-state information will be
considered different in the new source graph as compared
to the old source graph. Therefore, router & must send the
updated link-state information in FPj; to its neighbor ¢ in
add updates.

The same inductive argument holds for link-state
changes resulting in links being deleted from a preferred
path. In this case, an intermediate router that decides
that a link should no longer be used in any of its preferred
paths sends a delete update, which is propagated just like
an add update. This completes the first part of the proof.

Having shown that a router receives the most recent in-
formation about the links used in its source graph within
a finite time after g, it remains to be shown that it also
receives the most recent information about all the links
that are in its topology table, but not part of the source
graph of preferred paths. There are two possible cases to
consider of links in a router’s topology table that are not
used in its source graph: an adjacent link to the router,
or a non-adjacent link is in the source graph reported by
some of the router’s neighbor. In the first case, it is obvi-
ous that the lemma is true because of the basic assumption
of some underlying protocol providing the node with cor-
rect information about adjacent links within a finite time.
The second case follows almost immediately from the first
part of this proof. Because every neighbor of the router
sends the appropriate add or delete updates about links
added to or deleted from its source own graph, it must be
shown that each such neighbor obtains consistent informa-
tion about changes in its source graph, which was shown
to be the case in the first part of this proof. q.e.d.

REFERENCES

[1] R. Albrightson, J.J. Garcia-Luna-Aceves, and J. Boyle, “EIGRP-
A Fast Routing Protocol Based on Distance Vectors” Proc. Net-
world/Interop 94, Las Vegas, Nevada, May 1994.

[2] J. Behrens and J.J. Garcia-Luna-Aceves, “Distributed, Scalable
Routing based on Link-State Vectors,” Proc. ACM SIGCOMM
94, London, UK, August 1994.

[3] D. Bertsekas and R. Gallager, Data Networks, Second Edition,
Prentice-Hall, Inc., 1992.

[4] 1. Castineyra, J. N. Chiappa, and M. Steenstrup, The Nimrod
Routing Architecture, Internet Draft, January 1995

[5] C. Cheng, R. Riley, S. Kumar, and J.J. Garcia-Luna-Aceves,
“A Loop-Free Extended Bellman-Ford Routing Protocol without
Bouncing Effect,” ACM Computer Comm. Review, vol. 19, no. 4,
pp- 224-236, September 1989.

[6] D. Estrin, M. Steenstrup, and G. Tsudik, “A Protocol for Route
Establishment and Packet Forwarding across Multidomain Inter-
nets,” IEEE/ACM Trans. Networking, vol. 1, no. 1, pp. 56-70,
February 1993.

[7] E. Gafni, “Generalized Scheme for Topology-Update in Dynamic
Networks,” Lecture Notes in Computer Science (G. Goos and J.
Hartmanis, Eds.), no. 312, pp. 187-196, 1987.

[8] J.J. Garcia-Luna-Aceves, “Routing Management in Very
Large-Scale Networks,” Future Generation Computing Systems
(FGCS), North-Holland, vol. 4, no. 2, pp. 81-93, 1988.

[9] —, “ Reliable Broadcast of Routing Information Using Diffus-
ing Computations,” Proc. IEEE Globecom 92, Orlando, Florida,
December 1992.

[10] —, “Loop-Free Routing Using Diffusing Computations,”
IEEE/ACM Trans. Networking, vol. 1, no. 1, 1993.

[11] J.J. Garcia-Luna-Acevesand W.T. Zaumen, “Area-Based, Loop-
Free Internet Routing,” Proc. IEEE INFOCOM 94, Toronto,
Canada, June 1994.

[12] C. Hedrick, “Routing Information Protocol,” RFC 1058, Net-
work Information Center, SRI International, Menlo Park, CA,
June 1988.

[13] P.A. Humblet and S.R. Soloway, “Topology Broadcast Algo-
rithms,” Computer Networks and ISDN Systems, vol. 16, pp. 179-
186, 1989.

[14] P. Humblet, “Another Adaptive Distributed Shortest Path Al-
gorithm,” IEEFE Trans. Comm., vol. 39, no. 6, pp. 995-1003, June
1991.

[15] International Standards Organization, “Intra-Domain IS-IS
Routing Protocol,” ISO/IEC JTC1/SC6 WG2 N323, September
1989.

[16] International Standards Organization, “Protocol for Exchange of
Inter-domain Routing Information among Intermediate Systems
to Support Forwarding of ISO 8473 PDUs,” ISO/IEC/JTC1/SCé6
CD10747.

[17] J.M. Jaffe, “Algorithms for Finding Paths with Multiple Con-
straints,” Networks, vol. 14, pp. 95-116, 1984.

[18] L. Kleinrock and F. Kamoun, “Hierarchical Routing for Large
Networks: Performance Evaluation and Optimization,” Com-
puter Networks, vol. 1, pp. 155-174, 1977.

[19] K. Lougheed and Y. Rekhter, “ Border Gateway Protocol 3
(BGP-3),” RFC 1267, SRI International, Menlo Park, CA, Oc-
tober 1991.

[20] J. McQuillan, “Adaptive Routing Algorithms for Distributed
Computer Networks,” BBN Rep. 2831, Bolt Beranek and New-
man Inc., Cambridge MA, May 1974.

[21] J. Moy, “OSPF Version 2,” RFC 1583, Network Working Group,
March 1994

[22] R.Perlman, “Fault-Tolerant Broadcast of Routing Information,”
in Computer Networks, North-Holland, vol. 7, pp. 395-405, 1983.

[23] B. Rajagopalan and M. Faiman, “A Responsive Distributed
Shortest-Path Routing Algorithm within Autonomous Systems,”
Internetworking: Research and Ezperience, vol. 2, no. 1, pp. 51-
69, March 1991.

[24] Y. Rekhter, “Inter-Domain Routing Protocol (IDRP),” Inter-
networking: Research and FEzperience, Wiley, vol. 4, no. 2, pp.
61-80, June 1993.

[25] Y. Rekhter, S. Hotz, and D. Estrin, “Constraints on Forming
Clusters with Link-State Hop-by-Hop Routing,” Technical Report
USC-CS-93-536, University of Southern California, Los Angeles,
1994

[26] G.G. Riddle, “Message Routing in a Computer Network,”
U.S. Patent assigned to AT&T Bell Telephone Laboratories, Inc.,
Patent Number 4,466,060, August 1984.

[27] W.T. Tsai, C.V. Ramamoorthy, W.K. Tsai, and O. Nishiguchi,
“An Adaptive Hierarchical Routing Protocol”, IEEFE Trans.
Computers, vol. 38, no. 8, pp. 1059-1075, 1989.

[28] P. Tsuchiya, “The Landmark Hierarchy: A New Hierarchy for
Routing in Very Large Networks,” Computer Comm. Review, vol.
18, no. 4, pp. 43-54, 1988.

13

